(rielaborazione dalla Rivista “Le Controversie Bancarie” n. 15 – Anno II – novembre 2018 –Articolo pari titolo [5] – Antonio e Alessandro Annibali – Carla Barracchini – Francesco Olivieri – sito: www.attuariale.eu)
Si riportano di seguito alcune sentenze nelle quali (in forma diretta o indiretta) viene affermato (in carenza di qualsivoglia dimostrazione algebrica, viene, più scientificamente, congetturato) che nel piano di ammortamento “alla francese”, stilato in base al regime finanziario della capitalizzazione composta, le quote interessi sono calcolate secondo le leggi finanziarie del regime della capitalizzazione semplice.
Essendo l’argomento di esclusiva competenza del settore scientifico disciplinare SECS-S/06(Metodi matematici dell’economia e delle scienze attuariali e finanziarie, Ex: S04A – Matematica per le applicazioni economiche e S04B – Matematica finanziaria e scienze attuariali),del quale gli scrivente fanno parte, e della specifica attività professionale degli iscritti all’Ordine degli Attuari, del quale gli scriventi fanno parimenti parte,corre l’obbligo di rammentare, a chi disquisisce su tale argomento, che, come definito nella letteratura scientifica corrente, il regime finanziario della capitalizzazione composta è caratterizzato da leggi scindibili, che comportano la capitalizzazione degli interessi precedentemente maturati, mentre il regime finanziario della capitalizzazione semplice è caratterizzato da leggi additive, che comportano la non capitalizzazione di tali precedenti interessi.
Sentenza del Tribunale di Benevento – 19 novembre 2012 – Giudice Antonietta Genovese
“Il principio dell’interesse composto non provoca tuttavia alcun fenomeno anatocistico nel conteggio degli interessi contenuti in ogni singola rata”. “Il metodo non implica alcuna capitalizzazione degli interessi, poiché gli interessi vengono calcolati unicamente sulla quota capitale via via decrescente e per il periodo corrispondente a quello di ciascuna rata”.“Va peraltro rilevato che,secondo gli studiosi della materia, nei prestiti con rimborso graduale del capitale si registra un fenomeno di segno inversorispetto a quanto si verifica in regime di capitalizzazione”.
(Nota: gli interessi sono calcolati sul debito residuo immediatamente precedente, non sulla quota capitale, il fenomeno di segno inverso costituisce un’affermazione non presente in letteratura e del tutto incomprensibile).
Sentenza del Tribunale di Isernia – 17 marzo 2014 – Giudice Oreste De Angelis
“E la rata ingloba interessi, semplici (non composti), sempre calcolati, al tasso nominale, sul residuo capitale da restituire. Quel che è vero è che, nell’ammortamento alla francese, l’ammontare degli interessi è maggiore rispetto ad un ammortamento del capitale per quote uguali”. “Il CTU ha rilevato che la formula matematica in questo caso utilizza la legge di sconto composto, ma unicamente al fine di individuare la quota capitale da restituire in ciascuna delle rate prestabilite,mentre non va ad incidere sul separato conteggio degli interessi, che nel piano d’ammortamento alla francese risponde alle regole dell’interesse semplice”.
(Nota: il confronto con l’ammortamento “all’italiana” è del tutto privo di qualsiasi interesse, trattandosi di una diversa metodologia di ammortamento).
Sentenza del Tribunale di Milano – 5 maggio 2014 – Giudice Laura Cosentini
“il CTU ha rilevato che la formula matematica in questo caso utilizza la legge di sconto composto, ma unicamente al fine di individuare la quota capitale da restituire in ciascuna delle rate prestabilite, mentre non va ad incidere sul separato conteggio degli interessi, che nel piano di ammortamento alla francese risponde alle regole dell’interesse semplice”. “Il CTU ha concluso affermando che le quote di interessi periodali sono state calcolate mediante la legge dell’interesse semplice… e non vi è stata capitalizzazione degli interessi nella definizione degli elementi del piano di ammortamento”.
(Nota: la contemporanea presenza di due regime finanziari nello stesso ammortamento è un assurdo di tipo concettuale).
Sentenza del Tribunale di Torino – 17 settembre 2014 – Giudice Enrico Astuni
“La previsione di un piano di rimborso del mutuo graduale – in particolare con rata fissa costante (c.d. ammortamento alla francese) – non comporta alcuna violazione dell’art. 1283 c.c. per i seguenti tre motivi: 1)gli interessi di periodo vengono calcolati sul solo capitale residuo;2) alla scadenza della rata gli interessi maturati non vengono capitalizzati, ma sono pagati come quota interessi della rata di rimborso del mutuo,.. 3) visto che la rata paga, oltre agli interessi sul capitale a scadere, anche la quota del debito in linea capitale … si verifica un fenomeno inversorispetto alla capitalizzazione.”
(Nota: le considerazioni presentate costituiscono una replicazione di quanto indicato nella prima sentenza indicata in precedenza).
Sentenza del Tribunale di Venezia – 27 novembre 2014 – Giudice Manuela Farini
“Il metodo di ammortamento a rate costanti cosiddetto alla francese non dà luogo di per sé all’anatocismo.…tale metodo non implica affatto una capitalizzazione degli interessi, essendo questi calcolati unicamente sulla quota di capitale via via decrescente, … Né può sostenersi che si sia in presenza di un interesse “composto” per il solo rilievo fattuale che il metodo di ammortamento alla francese determina un maggior onere di interessi rispetto al piano di ammortamento all’italiana che si fonda sulle rate a capitale costante”.
(Nota: valgono le osservazioni già indicate in precedenza).
Sentenza del Tribunale di Treviso – 12 novembre 2015 – Giudice Andrea Cambi
“Deve infatti escludersi che nell’ammortamento con rata costante e rimborso graduale del capitale vi possa essere l’applicazione di interessi anatocistici, in quanto tale fenomeno può sussistere e si avrebbe interesse composto, soltanto se gli interessi maturati sul debito in un certo periodo si aggiungessero al capitale, andando a costituire la base di calcolo, ossia il capitale produttivo di interessi, del periodo successivo e cosí via”.
(Nota: conclusioni giuste, ma inficiate da premesse errate).
Sentenza del Tribunale di Padova – 12 gennaio 2016 – Giudice Giorgio Bertola
“E’ pur vero che per la determinazione della rata periodica nell’ammortamento francese viene utilizzata la formula di capitalizzazione composta, ma, ciò non ha alcun effetto nelladeterminazione della quota interessi.”, “L’utilizzo della formula di capitalizzazione composta per determinare la rata non è strettamente necessario per costruire il piano d’ammortamento. Predeterminati, infatti, l’importo del prestito e della rata e il tasso applicato, sono calcolati la quota interessi e la durata del prestito, pur sempre mediante applicazione della formula dell’interesse semplice”.
(Nota: come già detto, la contemporanea presenza di due regime finanziari nello stesso ammortamento è un assurdo di tipo concettuale).
Sentenza del Tribunale di Torino – 27 aprile 2016 – Giudice Enrico Astuni
Il metodo “alla francese” comporta che gli interessi vengano calcolati unicamente sulla quota capitale via via decrescente e per il periodo corrispondente a quello di ciascuna rata e non anche sugli interessi pregressi. Nel sistema progressivo ciascuna rata comporta la liquidazione ed il pagamento di tutti (ed unicamente de) gli interessi dovuti per il periodo cui la rata stessa si riferisce. Ciò non comporta tuttavia capitalizzazione degli interessi, atteso che gli interessi conglobati nella rata successiva sono a loro volta calcolati unicamente sulla residua quota di capitale, ovverosia sul capitale originario detratto l’importo già pagato con le rate precedenti”.
(Nota: valgono le osservazioni già indicate in precedenza).
L’affermazione, che, come evidenziato, risulta presente, in forma di congetturae senza alcuna dimostrazione teorica, in molteplici sentenze o CTU e CTP, tramite la locuzione “in un piano di ammortamento stilato in capitalizzazione composta le quote interessi sono calcolate in capitalizzazione semplice” (in talune occasioni accompagnata dalla inconciliabile precisazione “anche se le rate di ammortamento sono calcolate in capitalizzazione composta”) costituisce un palese errore di logica matematica, che potrebbe essere sanato adeguatamente mediante la lettura del classico testo “A system of logic” (1843) del filosofo ed economista britannico John Stuart Mill(disponibile nell’edizione italiana “Sistema di logica deduttiva e induttiva” – UTET 1988), e costituisce il presupposto di conseguenti determinazioni e decisioni errate dal punto di vista logico e comunque opposte a quelle alle quali si sarebbe potuto giungere con considerazioni suffragate da dimostrazioni matematiche.
La soluzione del dilemma potrebbe aversi, costruendo un piano di ammortamento secondo il regime finanziario della capitalizzazione semplice (il modello matematico di tipo algebrico è stato recentemente pubblicato dagli autori indicati all’inizio, riferimenti bibliografici [3] e [4]), potendosi globalmente affermare che:
- in un piano di ammortamento ‘alla francese’, stilato secondo le leggi del regime finanziario della capitalizzazione composta, le quote interessi debbono essere necessariamente calcolate in base a tale regime finanziario, e, in maniera duale, in un analogo piano di ammortamento, stilato secondo le leggi del regime finanziario della capitalizzazione semplice, le quote interessi debbono essere necessariamente calcolate, in termini attualizzati, in base a tale regime finanziario,
- l’affermazione secondo cui “in un piano di ammortamento ‘alla francese’ stilato secondo le leggi del regime finanziario della capitalizzazione composta, le quote interessi sono calcolate in base al regime finanziario della capitalizzazione semplice” è errata dal punto di vista algebrico e finanziario e sono quindi inconsistenti tutte le determinazioni e decisioni, che ne possono conseguire,
- nota ironica: ad un attuario/docente universitario di Matematica Finanziaria, al quale è stata chiesta la sua impressione rispetto alla precedente errata affermazione, non ha esitato a rispondere: “dichiarare che
in un piano di ammortamento ‘alla francese’, effettuato in capitalizzazione composta, le quote interessi sono calcolate in capitalizzazione semplice!
è algebricamente e finanziariamente sconcertante, al pari di come può risultare giuridicamente sconcertante ad un giurista il sentir definire
il negozio giuridicocome unabottega con dentro un avvocato!”.
Riferimenti Bibliografici
[1] Annibali Antonio, Annibali Alessandro,Barracchini Carla. – Anatocismo e ammortamento di mutui alla francese in capitalizzazione semplice: modello e applicazioni, CreateSpace Inpedentent Publishing Platform; 1 edition (May 24, 2016)ISBN-13:978-1533450227 e ISBN-10: 1533450226
[2] Annibali Antonio, Annibali Alessandro,Barracchini Carla. – Anatocismo e ammortamento di mutui alla francese. Manuale per le professioni di Magistrato, Dottore Commercialista ed Avvocato. CreateSpace Inpedentent Publishing Platform; 1 edition (Nov, 2016) ISBN-13:978-1539463948 e ISBN-10: 1533450226
[3] Annibali Antonio, Annibali Alessandro, BarracchiniCarla, Olivieri Francesco – “Rivisitazione del modello di calcolo dell’ammortamento “alla francese” di un mutuo in capitalizzazione semplice”, Rivista mensile: Le controversie Bancarie, Attualità di Giurisprudenza, Dottrina e casi pratici, anno II, num. 10, giu 2018 ISSN 2611-0083
[4] Annibali Antonio, Annibali Alessandro, BarracchiniCarla, Olivieri Francesco – “Rivisitazione del modello di calcolo dell’ammortamento “alla francese” di un mutuo in capitalizzazione semplice. Complementi”, Rivista mensile: Le controversie Bancarie, Attualità di Giurisprudenza, Dottrina e casi pratici, anno II, num. 11 e seguenti, 2018 ISSN 2611-0083
[5] Annibali Antonio, Annibali Alessandro,Barracchini Carla, Olivieri Francesco.– Nel piano di ammortamento “alla francese” stilato in base al regime finanziario della capitalizzazione composta (CC) le quote interessi sono calcolate secondo il regime della capitalizzazione semplice (CS) oppure della capitalizzazione composta (CC)? – Una risposta scientifica al problema mediante una verifica numerica e una dimostrazione algebrica”, Rivista mensile: Le controversie Bancarie, Attualità di Giurisprudenza, Dottrina e casi pratici, anno II, num. 15, nov 2018 ISSN 2611-0083
[6] Annibali Antonio, Annibali Alessandro,Barracchini Carla– Considerazioni sull’ammortamento nelle operazioni di leasing. Rivista mensile: Le controversie Bancarie, Attualità di Giurisprudenza, Dottrina e casi pratici, anno II, num. 7, mar 2018 ISSN 2611-0083
[7] Annibali Antonio, Annibali Alessandro,Barracchini Carla– Problematiche relative alla considerazione del tasso di mora nel calcolo del TAEG nell’ammortamento di un mutuo “alla francese”. Rivista mensile: Le controversie Bancarie, Attualità di Giurisprudenza, Dottrina e casi pratici, anno II, num. 7, mar 2018 ISSN 2611-0083
[8] Annibali Antonio, Annibali Alessandro,Barracchini Carla– Ammortamento di mutui “alla francese” in capitalizzazione semplice con alcuni pagamenti già effettuati in capitalizzazione composta. Rivista mensile: Le controversie Bancarie, Attualità di Giurisprudenza, Dottrina e casi pratici, anno II, num. 5, gen 2018 ISSN 2611-0083
[9] Annibali Antonio, Annibali Alessandro,Barracchini Carla– Le “strane” formule della Banca d’Italia in tema di usura. Complementi. Rivista mensile: Le controversie Bancarie, Attualità di Giurisprudenza, Dottrina e casi pratici, anno I, num. 4, dic 2017 ISSN 2611-0083
[10] Annibali Antonio, Annibali Alessandro,Barracchini Carla– Lo “stato dell’arte”, sia accademico che professionale, sulla presenza dell’anatocismo nell’ammortamento di mutui “alla francese” e relativa stesura del piano in capitalizzazione semplice,Rivista mensile: Le controversie Bancarie, Attualità di Giurisprudenza, Dottrina e casi pratici, anno I, num. 3, nov 2017 ISSN 2611-0083
[11] Annibali Antonio, Annibali Alessandro,Barracchini Carla– Matematica Finanziaria. Teoria e Applicazioni. Rubrica mensile: Le controversie Bancarie, Attualità di Giurisprudenza, Dottrina e casi pratici, anno I, num. 2, ott 2017 ISSN 2611-0083
[12] Annibali Antonio, Annibali Alessandro,Barracchini Carla– L’anatocismo nell’ammortamento di un mutuo alla francese: confronto con un conto corrente, Rivista mensile: Le controversie Bancarie, Attualità di Giurisprudenza, Dottrina e casi pratici, anno I, num.1 sett 2017 ISSN 2611-0083
[13] Annibali Antonio, Annibali Alessandro,Barracchini Carla– Le “strane” formule della Banca d’Italia in tema di usura, Rivista mensile: Le controversie Bancarie, Attualità di Giurisprudenza, Dottrina e casi pratici, anno I, num. 1, sett 2017 ISSN 2611-0083
[14] Annibali Antonio, Annibali Alessandro,Barracchini Carla. – “La reintroduzione dell’anatocismo nella modifica all’art. 120/2 del T.U.B”, Dirigenza Bancaria Finance-Management-Innovation n. 179 (2016) ISBN 1828-7247
[15] Annibali Antonio, Annibali Alessandro,Barracchini Carla. – “Ammortamento di mutui alla francese in capitalizzazione semplice”, Dirigenza Bancaria Finance-Management-Innovation n. 179 (2016) ISBN 1828-7247
[16] Annibali Antonio, Annibali Alessandro,Barracchini Carla. – “L’Anatocismo nei mutui tra diritto civile e Matematica Finanziaria”, Dirigenza Bancaria Finance-Management-Innovation n. 178 (2016) ISBN 1828-7247
[17] Aretusi Graziano, Mari Carlo – “Sull’esistenza e unicità dell’ammortamento dei prestiti in regime lineare”, Rivista trimestrale dell’ACRI IL RISPARMIO Anno LXVI – n.1 gennaio -luglio 2018 Codice ISSN 0035-5615 (print) ISSN 1971-9515 (online)
[18] Aretusi Graziano– Mutui e anatocismo- Aspetti matematici e tecnici – Ed. Lulu – North Caroline USA 2014 – ISBN 9-7812 91-819618
[19] Arrow Kenneth J. – Levhari David(1969) “Uniqueness of the Internal Rate of Return with Variable Life of Investment”, The Economic Journal Sept.1969, vol.79, pp.560-566.
[20] Castagnoli Erio– Peccati Lorenzo, (1973) “Alcune considerazioni in Tema di Classificazione degli Investimenti” Giornale degli Economisti e Annali di Economia, mar-apr 1973, vol. 32, pp. 235-252.
[21] Castagnoli Erio(1975) “Sul confronto fra i Criteri del Risultato Economico Attualizzato e del Tasso di Rendimento” Studi e Ricerche, Facoltà di Economia e Commercio dell’Università degli Studi di Parma, 1975, vol. 2, pp. 127-133.
[22] Fersini Paola, Olivieri Gennaro– “Sull’anatocismo nell’ammortamento francese” – Banche e Banchieri – Rivista dell’Associazione Nazionale Banche Private – n.2/2015 ISSN 0390-1378
[23] Gronchi Sandro – Lonzi Marco(1985) “Sulla concordanza di alcuni contributi in tema di Tasso Interno di Rendimento”. Note Economiche, n. 5/6, pp. 139-142.
[24] Gronchi Sandro(1986)“On Investment Criteria Based on the Internal Rate of Return”
Oxford Economic Papers, 1986, vol. 38, n. 1, pp. 174-180.
[25] Inzitari, Bruno, prefazione del Libro scritto da Luigi Spagnolo dal titolo: “L’Anatocismo Mascherato” edizione 2014 Esperidi
[26] Lazzar Francesco(1980) “Condizioni sufficienti per l’Unicità del Tasso Interno di Rendimento” Giornale dell’Istituto Italiano degli Attuari, lug.-dic. 1980, vol.43, pp.81-104.
[27] Levi Enrico(1950) “Sul Tasso di Interesse come Indice”, Giornale di Matematica Finanziaria, Serie III vol. 8 n.3 1950
[28] Lippi Federico, “L’anatocismo nel rimborso alla “francese”, 4 agosto 2013 http://www. federicolippi.it /content/view/339/30/
[29] Lonzi Marco(1986) “Aspetti Matematici nella Ricerca di Condizioni di Unicità per il Tasso Interno di Rendimento”, Rivista di Matematica per le Scienze Economiche e Sociali, 1986, n.2.
[30] Lippi Federico, “Anatocismo nascosto nei piani di ammortamento alla francese”, 5 gennaio 2014 http://www.federicolippi.it/content/view/341/30/
[31] Lonzi Marco(1986) “Unicità del Tasso Interno di Rendimento mediante il Computer”, Quaderno n. 3 dell’Istituto di Matematica, Facoltà di Scienze Economiche e Bancarie dell’Università degli Studi di Siena, marzo 1986.
[32] Lonzi Marco(1988) “Unicité du T.I.R. et Interets Cumulés: un Commentaire”, Economies et Sociétes, n. 8, pp. 25-36, 1988.
[33] Magnani Umberto(1971) “Su certi problemi di caratterizzazione e di scelta di operazioni finanziarie”, Fascicoli dell’Istituto di Matematica Generale e Finanziaria dell’Università degli Studi di Pavia, 1971, n.36.
[34] Magnani Umberto(1972) “Sul Criterio T.R.M. per la Scelta di Progetti”, Atti del Convegno sulle Applicazioni della Matematica alla Ricerca Operativa ed alle Scienze Attuariali. A cura dell’Istituto di Statistica, Salerno, ottobre 1972.
[35] Manca Paolo(1988) “Operazioni finanziarie di Soper e operazioni di puro investimento secondo Teichroew-Robichek-Montalbano”, Atti del XII^ Convegno A.M.A.S.E.S., Palermo
[36] Marcelli Roberto(2013), “Il Taeg e il Teg: analogie e differenze”, link: http://www.assoctu.it/dottrina/articolo/il-taeg-e-il-teg-analogie-e-differenze/
[37] Marcelli Roberto(2016), “Taeg e Teg: la contraddizione non trova soluzione. Le nuove disposizioni della Banca d’Italia in materia di trasparenza e rilevazione dei tassi d’usura”, Altalex, link: http://www.giusoft.it/articoli/Taeg%20e%20Teg.pdf
[38] Norstrom Carl J.(1970) “Uniqueness of the Internal Rate of Return with Variable Life of Investment: a comment” The Economic Journal Dec. 1970, vol.80, pp.983-984.
[39] Norstrom Carl J.(1971) “A Modification of the Internal Rate of Return Method” Statsokonomisk Tidsskrift, 1971, n.4 pp. 214-231.
[40] Norstrom Carl J.(1972) “A Sufficient Condition for a Unique Nonnegative Internal Rate of Return”, Journal of Financial and Quantitative Analysis, giugno 1972, vol. 7, pp. 1835-1939
[41] Rutigliano Michele – Faccincani Lorenzo– “Brevi note per riconoscere, ‘si spera definitivamente’ l’assenza di anatocismo nel mutuo con piano di ammortamento alla francese” –Banche e Banchieri – Rivista dell’Associazione Nazionale Banche Private – n.3/2017 ISSN 0390-1378
[42] Soper C. S.(1959) “The Marginal Efficiency of Capital: a Further Note”, The Economic Journal Marzo 1959, vol. 69, pp. 174-177.
[43] Spagnolo Luigi. – L’anatocismo mascherato – Ed. Esperidi 2014
[44] Teichroew Daniel – Robicheck Alexander A. – Montalbano Michael(1965) “Mathematical Analysis of Rates of Return Under Certainty” Management Science Jan. 1965, vol. 11, pp. 395-403.
[45] Teichroew Daniel – Robicheck Alexander A. – Montalbano Michael(1965) “An Analysis of Criteria for Investment and Financial Decisions under Certainty” Management Science Nov.1965, vol. 12, pp. 151-179.
[46] Volpe Di Prignano Ernesto – Sica C.(1981), “Problems of Valuation in Financial Substitutiv Operations and in Mixed Projects”in Mathematical Programming and its Economic Application, a cura di Castellani G. e Mazzoleni P., Franco Angeli, Milano 1981.
[47] Volpe di Prignano Ernesto(2002), Lezioni di matematica finanziaria classica – Ed. CISU – Roma 2002 ISBN 9-788879-753166
[48] Volpe di Prignano Ernesto(2009). Lezioni di matematica finanziaria avanzata – Ed. CISU – Roma 2009 ISBN 9-788879-754439
[49] Volpe Di Prignano Ernesto(2009), “Lectio Magistralis: usi & abusi del TRM”
[50] Warhe Das– Anatocismo nei mutui. Le formule segrete – Ed. D. Warhe DRM Watermark – 2016 ISBN 9-781530-622931